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Phase transitions and stability of dynamical
processes on hypergraphs
Guilherme Ferraz de Arruda 1,4✉, Michele Tizzani 1,4 & Yamir Moreno 1,2,3

Hypergraphs naturally represent higher-order interactions, which persistently appear in social

interactions, neural networks, and other natural systems. Although their importance is well

recognized, a theoretical framework to describe general dynamical processes on hypergraphs

is not available yet. In this paper, we derive expressions for the stability of dynamical systems

defined on an arbitrary hypergraph. The framework allows us to reveal that, near the fixed

point, the relevant structure is a weighted graph-projection of the hypergraph and that it is

possible to identify the role of each structural order for a given process. We analytically solve

two dynamics of general interest, namely, social contagion and diffusion processes, and show

that the stability conditions can be decoupled in structural and dynamical components. Our

results show that in social contagion process, only pairwise interactions play a role in the

stability of the absorbing state, while for the diffusion dynamics, the order of the interactions

plays a differential role. Our work provides a general framework for further exploration of

dynamical processes on hypergraphs.
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Network science has been successful in describing the
structure and dynamics of complex systems in many
fields of science. Nevertheless, in the vast majority of

studies, the mathematical and computational descriptions of
these networks are limited to pairwise interactions. In most cases,
this order of interaction is a good approximation, describing real
phenomena1–4. Recently, it has become increasingly evident that
simplifying higher-order interactions as a set of pairwise ones can
be misleading in many situations5,6, as it is the case, for instance,
when comparing triangles and clustering6. An attempt to for-
mally solve this problem is represented by the introduction of the
simplicial complexes approach7,8. Although very powerful, as a
topological space, simplicial complexes require mutual inclusion
for the interactions9, which is too restrictive for general purposes.
To face this problem, one needs to resort to the use of hyper-
graphs, which by relaxing the assumption of mutual inclusion,
allow the representation of a broader range of systems.

Admittedly, the attention to higher-order systems has pro-
liferated lately 5,6,8,10–20, with an increasing focus on hypergraphs in
fields such as mathematics6,12,13,15,16,21,22, physics8,10,11,17–19,23–25,
and computer science26–34. In many fields, the dynamical systems
approach appears naturally. This is the case of many problems
tacked in the physics literature mentioned above, where we are
interested in macroscopic changes that emerge from local interac-
tions. Specifically, this viewpoint was explored in social contagion
models in refs. 8,17, where first- and second-order transitions and
hysteresis were found. Along the similar lines, the problems of
evolutionary game theory18, synchronization23–25, and random
walks19,33,34 were also explored. Each field’s focus is different, but it
is often useful to use an abstract model that has a direct physical
interpretation. Perhaps, the simplest example of this is the use of
random walks in deep learning and machine learning
techniques33,34. Despite this interest, a general theory of dynamical
processes on higher-order structures is still largely missing.

Here we address this open problem by building a mathematical
framework that allows performing a linear stability analysis for
general processes on arbitrary hypergraphs. This approach high-
lights the importance of the graph projection—an underlying
weighted graph representation of a hypergraph—for the dynamics.

The proposed methodology makes it possible to decompose a
hypergraph in uniform structures, hence enabling the character-
ization of their role in the system’s dynamics. Finally, to show the
usefulness of our approach, we analytically study and recover
some results reported for social contagion8,17, and diffusion pro-
cesses, also providing new key insights into these paradigmatic
dynamics. The framework discussed in this paper could be used to
explore different processes when pairwise interactions are an
oversimplification of the system, which has the potential to bring
more insights into the understanding of higher-order dynamics of
interacting systems.

Results and discussion
A hypergraph, H ¼ fV; Eg, is defined as a set of nodes, V ¼ fvig,
with vi 2 Zþ, N ¼ jVj the number of nodes and a set of
hyperedges E ¼ fejg, where ej is a subset of V with arbitrary
cardinality ∣ej∣. We also denote Ei as the set of hyperedges that
contain the node i. Note that if maxðjejjÞ ¼ 2, we recover a graph,
whereas one has a simplicial complex if for each hyperedge with
∣ej∣ > 2, its subsets are also contained in E. The adjacency matrix15

can be defined as

Aik ¼
X
ej2E
i;k2ej
i≠k

1
jejj � 1

;
ð1Þ

which can be interpreted as a weighted projected graph. Note that
Aii= 0 for all i. An example of a hypergraph and its graph pro-
jection is shown in Fig. 1. A more general definition of the
adjacency matrix, including also diagonal elements, can be
expressed in terms of its weighted counterpart defined as

Wik ¼
X
ej2E
i;k2ej

wikðejÞ
jejj � 1

; ð2Þ

where wik(ej) is an arbitrary number. When wik(ej)=w(∣ej∣), the
weight is a function of the cardinality of the hyperedge, ej,
weighting differently the contribution of each hyperedge. For
instance, if we consider w(∣ej∣)= ∣ej∣− 1, we recover the adjacency
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Fig. 1 Graphical representation of a hypergraph. The hypergraph in a, its projection in b, and structural decomposition in c. Mathematically, The set of
nodes was represented by V ¼ fv1; v2; v3; v4; v5; v6; v7; v8g, while the set of hyperedges was E ¼ fe1; e2; e3; e4g, where the hyperedges are e1= {v1, v2, v3},
e2= {v3, v4, v5, v6}, e3= {v6, v7}, and e4= {v8}. We show how the original hypergraph (a) can be represented both by c decomposing it into m-uniform
hypergraphs (color-coded) or by b projection—where hyperedges are simplified as ∣ej∣-cliques, with j= 1, ..., 4.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00525-3

2 COMMUNICATIONS PHYSICS |            (2021) 4:24 | https://doi.org/10.1038/s42005-021-00525-3 | www.nature.com/commsphys

www.nature.com/commsphys


matrix used in ref. 19. Furthermore, the Laplacian matrix is
defined as L=D−A, where D= diag(ki) and the degree is given
as ki ¼

PN
j¼1 Aij. Note that, in order to define the Laplacian

matrix on the weighted case we also need to redefine D
accordingly.

We can also decompose the hypergraph into m-uniform
hypergraphs, as motivated in ref. 16. Formally,

Am
ik ¼

X
ej2E;jej j¼m

i;k2ej
i≠k

1
jejj � 1

;
ð3Þ

therefore A= ∑mAm as showed in Fig. 1. Consequently, we can
also define Dm, Lm, and Wm.

Linear stability analysis (LSA). A general dynamical process on
the hypergraph can be written as

dxi
dt

¼ f iðxiÞ þ
X
ej2Ei

gjðxfejgÞ; ð4Þ

where xi is the state of the node i, fi(xi) is a R ! R function that
depends only on the state of node i and gjðxfejgÞ is a Rjejj ! R
function that takes all the states of the nodes on the hyperedge ej,
here denoted as xfejg, and compute its contribution to xi. While

fi(xi) represents the internal dynamics of the node, gjðxfejgÞ is the
external interaction, expressed as the hyperedge contribution.

Linear stability analysis for higher-order systems has been
explored both in simplicial complexes24,25, where the mutual
inclusion constrain imposes a limit on the dynamics, and for
particular dynamics with a specific Laplacian for hypergraphs23.
Despite these efforts, a general theory of dynamical processes on
higher-order structures is still largely missing. Similarly to ref. 2, we
can perform a linear stability analysis for Eq. (4) around a known
fixed point, xi ¼ x�i . The linearized equations are expressed as

dϵi
dt

¼ df iðxiÞ
dxi

����
xi¼x�i

ϵi þ
X
ej2Ei

X
k2ej

∂xk gjðxfejgÞ
������
x¼x�

ϵk; ð5Þ

where x is a vector whose components are xi. We can express Eq.
(5) in its matrix form decomposing a general hypergraph into
uniform hypergraphs as

dϵ
dt

¼ Fðx�Þ þ Gðx�Þð Þϵ ¼ Mϵ; ð6Þ
where

Fiiðx�Þ ¼
df iðxiÞ
dxi

jxi¼x�i
i ¼ j

0 otherwise

(
ð7Þ

Gikðx�Þ ¼
X
ej2Ei

∂xk gjðxfejgÞ
������
x¼x�

¼
X
ej2Ei

1fk2ejg∂xk gjðxfejgÞ
������
x¼x�

;

ð8Þ

Mðx�Þ ¼ Fðx�Þ þ Gðx�Þ: ð9Þ
The fixed point x* is stable if

ΛiðMÞ<0 8i 2 f1; 2; :::;Ng; ð10Þ
where Λi(M) is the ith eigenvalue of the Jacobian M. Note that the
indicator function 1fk2ejg, which is one if the node k is inside the

hyperedge ej, and zero otherwise, in this case is redundant,

considering that gj depends only on the states of the nodes inside ej.
The general form of the adjacency matrix in Eq. (2) can be
expressed as

Wik ¼
X
ej2E
k2ej

wikðejÞ

¼
X
ej2Ei

1fk2ejgwikðejÞ;
ð11Þ

when wikðejÞ ¼ ðjejj � 1Þ∂xk gjðxfejgÞ calculated at the fixed point

x*, G=W. This shows that, although we have a high-order
structure (NmaxðjejjÞ in the tensorial representation13), near the fixed
point, the dynamics is described only by G 2 RN ´N , which is a
weighted graph-projection of the hypergraph, the weights being
determined by the dynamics. In special cases, as shown next, this
projection appears in the form of the Laplacian or the adjacency
matrix A in Eq. (1).

Moreover the matrix G can be decomposed in m-order
contributions Gm that correspond to the mth uniform hyper-
graph in the structural decomposition, such that

Gm
ikðx�Þ ¼

X
ej2Ei
jej j¼m

∂xk gjðxfejgÞjx¼x� ; ð12Þ

Gðx�Þ ¼
Xmax jejjð Þ

m¼1

Gmðx�Þ: ð13Þ

The structures of cardinality m do not contribute to the stability
of the fixed point x* if Gm

ikðx�Þ ¼ 0 ∀i, k. A similar approach can
be tackled by the bipartite representation of the hypergraph, as
shown in the next section.

Linear stability analysis: comparison with the bipartite repre-
sentation. In order to define the bipartite representation of a
hypergraph, we have to introduce the incidence matrix. The
common definition is given by

I ij ¼
1 if i 2 ej
0 if i =2 ej

(
; ð14Þ

where I 2 RN ´M as shown in refs. 19,20,23. In this case, we have
two sets of nodes, one representing the hypergraph nodes, and the
other the hyperedges. The relative projection is encoded in the
weighted adjacency matrix19

~A ¼ IIT �D; ð15Þ
where D= diag(ki) is a diagonal matrix whose diagonal elements
are the degrees. The element ~Aij can be interpreted as the number

of hyperedges shared by nodes i and j. Notice that
P

j
~Aij is the

number of neighbors of i, which can be different from the degree.
On the other hand, the projection in Eq. (1), can be defined as

A ¼ BBT � D̂; ð16Þ

D̂ii ¼
X

ej\fig≠;

1
jejj � 1

; ð17Þ

where the weighted incidence matrix is

Bij ¼
jejj � 1

� ��1
2

if i 2 ej

0 if i =2 ej

8<
: ð18Þ

and D̂ is a diagonal matrix. In this case, ∑jAij correctly represents
the degree, like in standard graph theory. Moreover, the
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projection in Eq. (15) can represent multiple hypergraphs, as
shown in Fig. 2a, b, while, in the case of Eq. (16) we could not
find the same projection for two different hypergraphs (Fig. 2b,
c). To the best of our knowledge, the proof of the one to one
mapping is an open problem.

From a dynamical point of view, Eq. (4) can be written in terms
of the bipartite representation as

dxi
dt

¼ f iðxiÞ þ
XM
j¼1

BijgjðxfejgÞ: ð19Þ

In this case, the linear stability is expressed by

dϵi
dt

¼ df iðxiÞ
dxi

����
xi¼x�i

ϵi þ
XM
j¼1

XM
k¼1

BijBkj∂xk gjðxfejgÞ
�����
x¼x�

ϵk; ð20Þ

recovering Eq. (5).

Linear stability analysis of separable interacting functions (LSA-
SIF). We now focus on the special case of a diffusion-like process
on hypergraphs. In this case, gjðxfejgÞ is separable and we can

express the interaction function as

gjðxfejgÞ ¼
1

jejj � 1

X
k2ej
k≠i

gðxiÞ � gðxkÞð Þ; ð21Þ

where the weight ðjejj � 1Þ�1 is necessary due to conservation
purposes. Assuming that fi(xi) is the same for all nodes, the fixed
point is symmetrical, i.e., x�i ¼ x�j for any pair i, j. In this case,
Eqs. (7) and (8) reduce to

F ¼ αI and G ¼ βL; ð22Þ
where I 2 RN ´N is the identity matrix, and

α ¼ df ðxÞ
dx

jx¼x� and β ¼ dgðxÞ
dx

jx¼x� : ð23Þ

Therefore, Eq. (5) is expressed as

dϵi
dt

¼ αþ
X
ej2Ei

X
k2ej

β

jejj � 1

0
@

1
Aϵi �

X
ej2Ei

X
k2ej

βϵk
jejj � 1

; ð24Þ

which in matricial form reads

dϵ
dt

¼ αIþ βLð Þϵ; ð25Þ

where ϵ is the vector whose components are ϵi. If μi are the
eigenvalues of L, the stability condition for the fixed point x* can
be written as α+ βμi < 0, for all i. Next, considering that the
Laplacian matrix is semi-positive definite, the former condition in
terms of the largest eigenvalue, μn, is

1
μn

>� dgðxÞ
dx

=
df ðxÞ
dx

� �
xi¼x�i

: ð26Þ

Linear stability analysis of interacting functions with symmetrical
derivatives (LSA-SD). Now, let us consider a second scenario for
gjðxfejgÞ such that

g�j ðxfejgÞ ¼
1

ðjejj � 1Þ gjðxfejnfiggÞ; ð27Þ

which depends, for a node i, only on xk, where k∈ ej and k ≠ i,
and the weight is the same as for Eq. (21). Assuming that fi(xi) is
the same for all nodes, and also all the derivatives of g�j are all the
same in the fixed point, Eq. (7) reduces to

dϵi
dt

¼ αϵi þ
X
ej2Ei

X
k2ej

βϵk
jejj � 1

; ð28Þ

or, equivalently,

dϵ
dt

¼ αIþ βAð Þϵ: ð29Þ

Note that, the former restriction covers the wide class of nor-
malized symmetric functions23. Denoting by λi, the eigenvalues of
A, the stability condition reads

1
λn

<� dgðxÞ
dx

=
df ðxÞ
dx

� �
xi¼x�i

<
1
λ1

: ð30Þ

In these two general cases, the projected adjacency matrix, Eq.
(1), arises naturally from the linear stability analysis around the
fixed point, which means that only the projected structure is
relevant for the dynamics. Moreover, as it can be seen from Eqs.
(26) and (30), we can decouple the structural and dynamical
contributions to the stability conditions.

Linear stability analysis of uniform hypergraphs (LSA-UH). So far
we have focused on arbitrary structures. However, it is worth
emphasizing that structural constraints might allow for a sim-
plification of the linear stability condition. A special class of
hypergraphs that allows for that are uniform hypergraphs, for
which all hyperedges have the same cardinality. Note that
although the cardinality of the hyperedges is the same, the degree
distribution could be arbitrary. Moreover, even if constrained,
this class of hypergraphs was used to study epidemic spreading35

and evolutionary games18. As all the hyperedges have the same
cardinality, the interacting functions will be the same, i.e.,
gjðxfejgÞ ¼ gðxfejgÞ. Assuming symmetric derivatives and denot-

ing them by β as in Eq. (21), and, given that we are restricted to
undirected hypergraphs, G will comply with one of the three
following cases: (i) separable functions, thus G= βL, (ii) nor-
malized functions of its entries23, where gðxfejgÞ does not dis-

tinguish between xi and the other arguments, in this case G= β
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Fig. 2 Different hypergraph projections. Projection of two different
hypergraphs built on the same set of nodes, V ¼ fv1; v2; v3; v4; v5g. In a
projection following the incidence matrix in Eq. (15), b original hypergraphs,
and c the weighted projection for the model presented in Eq. (16). In a and
c, the edges' colors represent their weights as indicated next to each edge.
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(A+D), which has the same form of sing-less Laplacian in graph
theory, (iii) independent of xi, i.e., gðxfejgÞ ¼ gjðxfejnfiggÞ, thus
G= βA.

Note that although the former derivations are specific for these
cases, Eq. (10) holds for general dynamics in an arbitrary
hypergraph. The framework outlined up to now is general and
can be readily applied to many dynamical processes in which one
is forced to go beyond pairwise interactions. In what follows, we
discuss two of such applications, namely, social contagion8,17 and
diffusion processes. For the social contagion case, the stability of
the process is related to the adjacency matrix, following a similar
form as Eq. (30), where we were able to employ the structural
decomposition to evaluate the role of pairwise and higher-order
structures. On the other hand, for the diffusion, the stability
depends on the Laplacian matrix, yielding to a condition of the
form of Eq. (26). In this case, we show that hypergraphs’
structural organization may introduce a nontrivial behavior, and
we remark that the Laplacian operator is connected to many
other dynamical processes, such as random walks and synchro-
nization. With these two processes, we exemplify possible
applications of the linear stability analysis and the structural
decomposition, providing insights about these dynamics in
hypergraphs and suggesting further implications in other
processes.

Application to a process of social contagion. In this dynamical
process, the state xi represents the probability of an individual to
be active. The deactivation mechanism is given by fi(xi)=−δxi
and the interaction functions gjðxfejgÞ are given by the product of

the probability that i is inactive and the other nodes in the
hyperedge ej are active times a contact rate, βjejj. Hence,

gjðxfejgÞ ¼
βjejj

jejj � 1
ð1� xiÞ

Y
k2ej
k≠i

xk: ð31Þ

Separating the pairwise and higher-order contributions to the
state of the node, we have

dxi
dt

¼� δxi þ β2
X
ej2Ei
jej j¼2

k2ej ;k≠i

ð1� xiÞxkþ

þ
X
ej2Ei
jej j>2

βjejj
jejj � 1

ð1� xiÞ
Y
k2ej
k≠i

xk:

ð32Þ

Assuming a symmetric fixed point, i.e., xi= x*,

dϵi
dt

¼ �δ �
X
ej2Ei

βjejjðx�Þ
ðjejj�1Þ

jejj � 1

0
@

1
Aϵi

þ
X
ej2Ei

X
k2ej
k≠i

βjejjð1� x�Þðx�Þðjejj�2Þ

jejj � 1
ϵk;

ð33Þ

where we can apply Eq. (10) to evaluate the stability of the sys-
tem’s dynamics. The mean-field form of Eq. (32) is given by

dx
dt

¼ �δx þ PνðxÞ ¼ �δx þ
Xν
k¼1

βkcðkÞð1� xÞxk�1; ð34Þ

where ν ¼ maxjfjejjg is the maximum cardinality and c(k) is the
ratio between the number of hyperedges with cardinality k and
the number of pairwise interactions, which characterizes the
structure of the hypergraph. In the steady state this is a

polynomial equation whose solutions are the fixed points of the
process and their stability can be evaluated using Eq. (33).

Social contagion: general behavior. A fundamental observation
from Eq. (33) is that only pairwise interactions, given by the off-
diagonal terms, are responsible for the stability of the absorbing
state, the fixed point xi= 0. Specifically, the stability condition for
this state depends on the second-order adjacency matrix from
Eq. (3) and is given by

β

δ
< ΛmaxðA2Þ� ��1

: ð35Þ

Interestingly enough, in this scenario, the dynamics behaves
like an SIS process on complex networks, and is characterized
by a continuous phase transition36. Therefore, we claim that in
a social contagion model, pairwise interactions are a necessary
condition for a continuous phase transition. We can support
this claim using an argument by contradiction as follows.
Near the absorbing state the probability for a node to be active
is very small, hence, assuming an arbitrary small number η ≈ 0,
we can consider xi ∈ O(η). Therefore, from Eq. (32), the coef-
ficients βjejj are multiplying terms of order Oðηðjejj�1ÞÞ. At the
steady state, δxi � βjejj xi, assuming δ ∈ O(1) without loss of

generality. From this point, we can differentiate three cases
depending on βjejj:

(i) If βjejj 2 Oð1Þ for all jejj 2 f1; 2; :::;maxðjejjÞg, then the
leading coefficient is β2 therefore β2xi∈O(η) as assumed. In
this case we have a continuous phase transition with respect
to the control parameter β2;

(ii) If β2∈O(1) and βjejj 2 Oðη�ðjejj�2ÞÞ, for ∣ej∣ > 2, then the
leading coefficient is βjejjxi 2 OðηÞ, thus the transition can
be either continuous or discontinuous;

(iii) If βjejj 2 Oðη�ðjejj�1ÞÞ for all jejj 2 f1; 2; :::;maxðjejjÞg, then
the leading coefficient is βjejjxi 2 Oð1Þ, which contradicts
the initial assumption of xi∈O(η). This suggests a
discontinuity if β2∈O(1) and at least one of the higher-
order coefficients is Oðη�ðjejj�1ÞÞ.

Social contagion: mean-field approach. To further extend the
analysis in ref. 8, in order to compute c(k), we consider higher-
order contact patterns from two real datasets. The data were
collected with proximity sensors in a high school14,37, and a
primary school14,38. Our results are summarized in Fig. 3a, b,
where we consider the feasible fixed points and their stability.
In this case, we assume β2= β and βk= βek, in order to
emphasize the role of lower and higher-order structures. Notice
that, given the same parameters, we can have either continuous
or discontinuous phase transitions with hysteresis, depending
only on the structure of the hypergraph. Considering the
graph case, i.e., maxjfjejjg ¼ 2, the social contagion model is an
SIS epidemic spreading. Thus, the behavior near the fixed point
x*= 0 is

dϵi
dt

¼ �δϵi þ β2
X
ej2Ei

ϵk: ð36Þ

Note that the stability of the absorbing state is given by λmax<
δ
β2
,

as for the quenched mean-field39.
Next, we analyze the simplicial complex case, where the

structure is homogeneous and consists only of pairwise interac-
tions and triangles, hence n= 3. In this case, Eq. (34) has the
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three solutions, x�1 ¼ 0, and

x� ±2 ¼ ðβ32 � β2Þ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ2 � β3

2 Þ
2 � 2β3ðδ � β2Þ

q
β3

: ð37Þ

From Eq. (33) we derive the following condition

�δ � β2x
� � β3x

�2

2
þ β2ð1� x�Þ þ β3ð1� x�Þx�


 �
< 0; ð38Þ

thus, x�1 ¼ 0 is stable for β2 < δ. The feasibility of the solution
x� ±2 was shown in ref. 8. Complementarily, Fig. 3c–f shows the
results of the corresponding stability analysis, illustrating how our
approach could provide new insights. As noted before, we stress
that Eq. (33) is not limited to the case of simplicial complexes, but
it can be used to further explore higher-order structures. Our
findings are in alignment with ref. 40.

Social contagion: uniform hypergraphs. Restricting our analysis to
uniform hypergraphs, Eq. (32) reduces to

dxi
dt

¼ �δxi þ
βjejj

jejj � 1

X
ej2Ei

ð1� xiÞ
Y
k2ej
k≠i

xk; ð39Þ

whose solutions are

x ¼ β� Ax½jejj�1� � Ax½jejj�
� �

; ð40Þ

where the β� ¼ βjej j
δðjejj�1Þ is the scaled spreading rate and x[k] is the

element-wise kth power vector, i.e., x½k� ¼ xki
� T

. We now focus
on homogeneous degree distributions where all the nodes have
the same degree. In this case, x= xi, 8i 2 V and the solutions, x*

(β*), of Eq. (40) are the roots

β�hkiðxjejj�1 � xjejjÞ � x ¼ 0; ð41Þ
which are stable if

�δ � β�hkiδðjej � 1jÞð1� x�Þðx�Þjejj�2 < 0: ð42Þ

We observe numerically that Eq. (41) has three feasible solutions,
of which two are stable, including the absorbing state x*= 0, and
one unstable. The first non-zero positive value of the stable solution
is denoted by Qlðβ�c Þ, where β�c is the tipping point, using the same
notation as ref. 17. As shown in Fig. 4a, b, both Qlðβ�c Þ and β�c
increase with the cardinality, in particular the last one follows a
linear trend as shown in Fig. 4c. Notice that in this annealed
approach we can consider 〈k〉 just as a scaling factor of β*.

From Eq. (41), considering that β* is a free parameter, x= 0 is
always a solution. Moreover, for finite β* and in the limit of
infinite cardinality, in the range of 0 ≤ x ≤ 1, x= 0 is the only
solution. Finally, in the case of infinite β*, the only feasible
solution is x= 1. This argument aligns with the numerical results
of Fig. 4c. For ∣ej∣= 2, trivially we have an SIS dynamics and a
continuous phase transition. On the other hand, in the limit of
infinite cardinality, the system displays a discontinuous phase
transition and β�c ! 1 and Qlðβ�c Þ ¼ 1. For finite cardinalities
the tipping point is also finite.

Application to diffusion processes. Another immediate appli-
cation is the diffusion process2. In this case, gjðxfejgÞ is separable
and g(xi)= xi. The dynamics of the process is given by

dx
dt

¼ �DLx: ð43Þ

where D is the diffusion constant and the minus sign is a con-
sequence of the stability condition in Eq. (26). We can arbitrarily
decompose the Laplacian in m-uniform hypergraphs as done for
the adjacency matrix in Eq. (3). In particular, we want to consider
if the lower-order contributions are enough to describe the
dynamics. To this end, we can separate the Laplacian in two
components L= LO(θ)+ LR(θ) given by

LOðθÞ ¼
Xθ
m¼1

Lm and LRðθÞ ¼
XmaxðjejjÞ

m¼θþ1

Lm; ð44Þ

where θ differentiates between higher and lower-order Laplacian,
LR(θ) and LO(θ), respectively. In order to underline the important

Fig. 3 Stability analysis of a social contagion dynamics on real-world, and synthetic hypergraphs. In a, the substrate is a high school contact pattern,
while in b, a primary school contact pattern. The order parameter, X, is the fraction of active nodes, while β is the spreading rate. c–f Results for the stability
analysis of a simplicial complex in the space of the spreading rates for pairwise interactions, β2, and triangles, β3. c, e Correspond, respectively, to the
solution x��2 (Eq. (37)) and its stability (Eq. (38)), whereas d, f represent the solution x�þ2 (Eq. (37)) and its stability (Eq. (38)), respectively. Here, x�þ2 and
x��2 are solutions of the mean-field equation that describes the social contagion model. In e, f, U and S stand for unstable and stable, respectively.
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role played by the structure on the dynamics, we next analyze a
diffusion process on both a synthetic hypergraph generated
according to a power-law cardinality distribution, P(∣e∣) ~ ∣e∣−2.05,
and a real hypergraph using data from email exchange at a
European research institution14,41,42. In Fig. 5a, b, we show the
variance of xOðθ; tÞ ¼ e�DLOðθÞtxð0Þ, which is the solution of the
diffusion process on the lower-order Laplacian LO. For a small
enough θ, we have disconnected components and the process
does not reach the final state of the complete Laplacian. On the
other hand, when the final state is reached, different θ’s corre-
spond to different timescales, and in particular, convergence is
faster when increasing θ. In fact, for the synthetic case we need
less information (structures) to represent the whole process, in
the email dataset the convergence is only reached for θ− 1, as
shown in Fig. 5b. The relative error can be estimated as

E2 ¼
jjxðtÞ � xOðθ; tÞjj2

jjxðtÞjj2
: ð45Þ

For the synthetic case, as shown in Fig. 5c, the error curves show

peaks that are higher for lower values of θ. For long enough times,
different plateau is reached depending on how many components
are considered. The same is true for the email case, Fig. 5d,
however we have a multiple peaked pattern, suggesting that we
have various structures, each one with a different time scale. As
expected, only for θ= 39, the error goes to zero, highlighting that
real structures might have nontrivial behavior.

Another important aspect is the role on the dynamics of
considering different weights for the hyperedges8,17,18. In
particular, by redefining the Laplacian with the weighted
adjacency matrix, Eq. (2), different choices of w(∣ej∣) can be used,
as shown in Fig. 5e–g. As expected, increasing the weights reduces
the convergence time. Aside from the different timescales in the
two examples, we show that real data might also have a
qualitatively different behavior, as shown in Fig. 5f, g. In
particular, we focus on the power-law weighting functions, w
(∣ej∣)= ∣ej∣−γ, in Fig. 5g. In this case, since higher-order structures
are heavily penalized, we observe a greater time modulation by
increasing γ. We also note that a well-established approach to this

Fig. 4 Numerical results for the social contagion dynamics on uniform hypergraphs. a The feasible stable solution as a function of the scaled spreading
rate β* for different values of cardinality (color-coded), in the range from ∣ej∣= 3 in blue, to ∣ej∣= 30 in light gray. b The first non-zero positive value of the
stable solution, Ql, as a function of the cardinality. c Depicts the behavior of β* at the tipping point, β�c , as a function of the cardinality, revealing a linear
behavior.

Fig. 5 Caracterization of diffusion on real and synthetic hypergraphs. a–c Represents real hypergraphs, while e–g synthetic ones. a, b The variance of
states, xO(θ, t), up to order θ, in the diffusion, while c and d display the error E2, both as a function of time and structures considered, θ (color-coded). To
represent the hypergraphs, we used in a and c, a power-law distribution of cardinalities, whereas in b and d, the hypergraph is given by the real email data
(see text). The three panels to the right (e–g) show results obtained for weighted diffusion on hypergraphs, in terms of the variance of the state of the
complete system x, defined by Eq. (43). e, f The effect of the different weights as a function of the cardinality, Eq. (2), see the legend. e Corresponds to a
synthetic hypergraph with a power-law distribution of cardinalities, P(∣e∣) ~ ∣e∣−2.05, and f to the email hypergraph. g Explores the dependency with the
exponent of the power-law weighting function.
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problem could be the analysis of some of the spectral modes of
the Laplacian. In this case, it is not possible to decouple the
contributions of different orders from the spectrum. On the other
hand, the structural decomposition explicitly takes into account
each order, allowing a straightforward analysis of the dynamics.

Conclusions
In this paper, we have developed a framework that allows to
describe the relationship between the structural organization of
hypergraphs and a highly general class of dynamical processes,
beyond pairwise interactions. Within this framework, the graph
projection appears naturally from a linear stability analysis
around a given fixed point. Therefore, the dimensionality of
the hypergraph, NmaxðjejjÞ in its tensor representation, around the
fixed point is reduced to a N2 space. Moreover, we showed that
using a structural decomposition in m-uniform hypergraphs,
given by Eq. (3), enables the individual analysis of each mth order
component. Altogether, the methodology provides the stability
condition for a general class of dynamical process and also allows
to identify the structural components that play a role in the
stability of any known fixed point. Of particular interest are the
special cases LSA-SIF, LSA-SD and LSA-UH as one is able to
separate the structural and dynamical contributions to stability.
We also applied the proposed framework to two relevant dyna-
mical processes, namely, social contagion and diffusion dynamics.
For the former, we not only recovered known results for graph-
based and simplicial complexes, but we obtained a necessary
condition for the stability of the absorbing state, showing that
only pairwise interactions play a role for such a state. In addition,
our analysis revealed the conditions for the continuity of the
phase transition also for real systems, where different kinds of
bifurcations might appear. Furthermore, in the special case of
uniform hypergraphs, we have shown that both the tipping point
and Qlðβ�c Þ increase with the cardinality. In particular, for finite
cardinalities the tipping point is also finite, whereas in the infinite
limit the two possible solutions are x= 0 and x= 1, being the
latter only possible for β*→∞. Finally, with regard to diffusion
processes, we characterized the role played by the structural
decomposition of the hypergraph and different weighting func-
tions for the hyperedges on the dynamics of the system. In
conclusion, we are confident that this investigation will motivate
further research on the spectral properties of hypergraphs, their
structural characterization, and in providing relevant insights in
different areas where higher-order interactions can not be
neglected, also beyond the community of dynamical processes on
complex networks.

Data availability
The dataset used is available at: https://www.cs.cornell.edu/~arb/data/.

Code availability
Custom code that supports the findings of this study is available from the corresponding
author upon request.
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